↓ Skip to main content

Airway smooth muscle NOX4 is upregulated and modulates ROS generation in COPD

Overview of attention for article published in Respiratory Research, July 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Airway smooth muscle NOX4 is upregulated and modulates ROS generation in COPD
Published in
Respiratory Research, July 2016
DOI 10.1186/s12931-016-0403-y
Pubmed ID
Authors

Fay Hollins, Amanda Sutcliffe, Edith Gomez, Rachid Berair, Richard Russell, Cédric Szyndralewiez, Ruth Saunders, Christopher Brightling

Abstract

The burden of oxidative stress is increased in chronic obstructive pulmonary disease (COPD). However, whether the intra-cellular mechanisms controlling the oxidant/anti-oxidant balance in structural airway cells such as airway smooth muscle in COPD is altered is unclear. We sought to determine whether the expression of the NADPH oxidase (NOX)-4 is increased in airway smooth muscle in COPD both in vivo and primary cells in vitro and its role in hydrogen peroxide-induced reactive oxygen species generation. We found that in vivo NOX4 expression was up-regulated in the airway smooth muscle bundle in COPD (n = 9) and healthy controls with >20 pack year history (n = 4) compared to control subjects without a significant smoking history (n = 6). In vitro NOX4 expression was increased in airway smooth muscle cells from subjects with COPD (n = 5) compared to asthma (n = 7) and upregulated following TNF-α stimulation. Hydrogen peroxide-induced reactive oxygen species generation by airway smooth muscle cells in COPD (n = 5) was comparable to healthy controls (n = 9) but lower than asthma (n = 5); and was markedly attenuated by NOX4 inhibition. Our findings demonstrate that NOX4 expression is increased in vivo and in vitro in COPD and although we did not observe an intrinsic increase in oxidant-induced reactive oxygen species generation in COPD, it was reduced markedly by NOX4 inhibition supporting a potential therapeutic role for NOX4 in COPD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 22%
Student > Bachelor 4 15%
Librarian 2 7%
Researcher 2 7%
Other 1 4%
Other 4 15%
Unknown 8 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 33%
Medicine and Dentistry 7 26%
Nursing and Health Professions 2 7%
Engineering 1 4%
Unknown 8 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 October 2016.
All research outputs
#15,091,226
of 25,374,647 outputs
Outputs from Respiratory Research
#1,582
of 3,062 outputs
Outputs of similar age
#210,004
of 377,270 outputs
Outputs of similar age from Respiratory Research
#20
of 40 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 377,270 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.