↓ Skip to main content

Toxic stress-specific cytoprotective responses regulate learned behavioral decisions in C. elegans

Overview of attention for article published in BMC Biology, February 2021
Altmetric Badge

Mentioned by

twitter
9 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Toxic stress-specific cytoprotective responses regulate learned behavioral decisions in C. elegans
Published in
BMC Biology, February 2021
DOI 10.1186/s12915-021-00956-y
Pubmed ID
Authors

Gábor Hajdú, Eszter Gecse, István Taisz, István Móra, Csaba Sőti

Abstract

Recognition of stress and mobilization of adequate "fight-or-flight" responses is key for survival and health. Previous studies have shown that exposure of Caenorhabditis elegans to pathogens or toxins simultaneously stimulates cellular stress and detoxification responses and aversive behavior. However, whether a coordinated regulation exists between cytoprotective stress responses and behavioral defenses remains unclear. Here, we show that exposure of C. elegans to high concentrations of naturally attractive food-derived odors, benzaldehyde and diacetyl, induces toxicity and food avoidance behavior. Benzaldehyde preconditioning activates systemic cytoprotective stress responses involving DAF-16/FOXO, SKN-1/Nrf2, and Hsp90 in non-neuronal cells, which confer both physiological (increased survival) and behavioral tolerance (reduced food avoidance) to benzaldehyde exposure. Benzaldehyde preconditioning also elicits behavioral cross-tolerance to the structurally similar methyl-salicylate, but not to the structurally unrelated diacetyl. In contrast, diacetyl preconditioning augments diacetyl avoidance, weakens physiological diacetyl tolerance, and does not induce apparent molecular defenses. The inter-tissue connection between cellular and behavioral defenses is mediated by JNK-like stress-activated protein kinases and the neuropeptide Y receptor NPR-1. Reinforcement of the stressful experiences using spaced training forms stable stress-specific memories. Memory retrieval by the olfactory cues leads to avoidance of food contaminated by diacetyl and context-dependent behavioral decision to avoid benzaldehyde only if there is an alternative, food-indicative odor. Our study reveals a regulatory link between conserved cytoprotective stress responses and behavioral avoidance, which underlies "fight-or-flight" responses and facilitates self-protection in real and anticipated stresses. These findings imply that variations in the efficiency of physiological protection during past episodes of stress might shape current behavioral decisions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 14%
Student > Bachelor 5 14%
Student > Master 4 11%
Student > Doctoral Student 3 9%
Other 2 6%
Other 2 6%
Unknown 14 40%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 23%
Neuroscience 4 11%
Agricultural and Biological Sciences 3 9%
Immunology and Microbiology 1 3%
Social Sciences 1 3%
Other 1 3%
Unknown 17 49%